文章编号:0253-2239(2001)10-1224-04

BBO-I 非共线光学参变啁啾脉冲放大增益带宽的 实验研究*

杨晓东 徐至展 张正泉 彭家辉 冷雨星 王建安 金石绮

(中国科学院上海光学精密机械研究所强光光学开放研究实验室,上海 201800)

摘要: 以纳秒级调 Q 倍频的 Nd: YAG 激光器为抽运源、以自锁模钛宝石激光器输出并经光栅展宽的 800 nm 啁 啾脉冲为信号光,实验研究了其宽带 BBO-I 非共线相位匹配光学参变啁啾脉冲放大(OPCPA)的增益谱。研究结果 表明,非共线夹角的变化对 BBO-I 非共线相位匹配光学参变啁啾脉冲放大的增益谱有很大的影响。

关键词: 光学参变啁啾脉冲放大(OPCPA);非共线夹角;增益带宽

中图分类号:TN248.1 文献标识码:A

1 引 言

进入 90 年代以来 基于啁啾脉冲放大(CPA)的 超短脉冲激光放大技术在台式钛宝石超强超短激光 技术领域的应用给激光技术的发展带来了一次革命 性的推动。但是受啁啾脉冲放大过程的增益窄化效 应和钛宝石晶体生长尺寸的限制12],台式钛宝石 啁啾脉冲放大超强超短激光系统要进一步提高输出 峰值功率已面临极大的困难。近年来,国际上提出 了一种全新的超强超短激光放大技术——光学参变 啁啾脉冲放大(OPCPA)³。这种技术不仅具有啁 啾脉冲放大技术高增益的优点,而且还具有光学参 变放大(OPA)技术宽增益带的优点,避免了放大过 程的增益窄化。另外光学参变啁啾脉冲放大系统所 采用的放大介质即非线性晶体的尺寸可以生长得很 大(如 KDP 晶体的尺寸可以达到 30 cm 以上^[3])。 在 Akira 等人报道的非共线光学参变放大实验中, 放大带宽达到了 2000 cm^{-1[4]}。Cerullo 等人利用倍 频钛宝石激光器抽运的 BBO-I 非共线光学参变放 大 产生了短至 7.2 fs 的超短脉冲输出^[5]。Ross 等 人给出了一个光学参变啁啾脉冲放大激光系统方案 设计 其理论模拟结果表明 利用三级光学参变啁啾 脉冲放大器,放大介质总长不到5 cm,就可以得到 4×10¹¹的小信号放大增益^[3]。另外,光学参变啁啾 脉冲放大过程中,只在抽运光脉冲宽度的时间窗口 内具有放大效应 因此光学参变放大可以大大降低

激光脉冲的预脉冲。此外,光学参变啁啾脉冲放大 过程具有很低的 B 积分累积效应和较小的热畸变, 因此,光学参变啁啾脉冲放大将完全可以替代现有 的钛宝石再生放大器和多通放大器,从而大大提高 台式超强超短激光系统的峰值输出功率和激光的聚 焦功率密度。

本文报道了我们在光学参变啁啾脉冲放大研究 过程中的实验研究结果。实验中采用调 Q 倍频 YAG 激光器抽运的 BBO-I 非共线相位匹配光学参 变放大 对中心波长为 800 nm、光谱宽度(FWHM) 为 36 nm 的啁啾脉冲进行了光学参变啁啾脉冲放 大实验。研究结果表明 ,BBO-I 非共线光学参变啁 啾脉冲放大(NOPCA)完全可以支撑大于 36 nm 的 增益带宽 ,且光学参变放大的非共线角即抽运光--信 号光夹角对非共线光学参变啁啾脉冲放大的增益带 宽影响非常明显。

2 理论分析

光学参变放大信号光的放大增益可以通过数值 求解耦合波方程得到。假设在光学参变放大过程中 不考虑抽运光衰减、光在晶体中的损耗以及群速度 失配,信号光的强度增益 G 可表示为⁶¹:

 $G = 1 + (\gamma L)' (\sinh A/A)', \quad (1)$ 其中,

$$A = [(\gamma L)^{2} - B^{2}]^{1/2},$$

$$B = \Delta k L/2,$$

$$\gamma = 4\pi d_{\text{eff}} \left[I_{\text{p}} / (2\varepsilon_0 n_{\text{p}} n_{\text{s}} n_{\text{i}} c \lambda_{\text{s}} \lambda_{\text{i}}) \right]^{1/2}$$

这里的 γ 为有效增益系数 , 下标 s, i 和 p 分别表示

^{*} 中国科学院知识创新重大项目经费资助课题。

收稿日期 2000-05-17; 收到修改稿日期 2000-09-07

信号光、闲散光和抽运光。L 代表晶体的长度 I_p 为 抽运光光强 d_{eff} 为晶体的有效非线性系数 $\Delta k = |\Delta k|$ 为光学参变放大过程的相位失配。

考虑 BBO 第一类非共线相位匹配,对上述公式 进行数值求解,可以得出光学参变放大增益谱。

图 1 为 BBO-I 非共线光学参变啁啾脉冲放大 在不同非共线夹角 α 下的增益光谱分布。这里采 用 532 nm 光作为抽运光,脉冲宽度为 6 ns,信号光 中心波长为 800 nm,晶体长度为 13.5 mm,抽运光 光强为 200 MW/cm²。

Fig. 1 The OPA gain against the wavelength in BBO-I NOPCA configuration calculated for pump wavelength of 532 nm with pulse duration of 6 ns , pump intensity of 200 MW/cm² , the signal centering at 800 nm , the crystal length of 13.5 mm and at (a) $\alpha = 41.5$ mrad , (b) $\alpha = 42$ mrad ,(c) $\alpha = 42.5$ mrad ,(d) $\alpha = 41$ mrad and (e) $\alpha = 30$ mrad

从图 1 中可以明显看出 ,光学参变放大的非共 线角 α 对信号光的增益谱的影响非常显著。图 1 中曲线 a 中的 α 为 41.5 mrad, 对应的增益带宽 (FWHM)约为180 nm。图1中曲线 b 和曲线 c 中 的 α 则分别为 42 mrad 和 42.5 mrad 从这两个图中 的增益曲线可以看出,它们的增益谱比曲线 a 中的 增益谱具有更好的对称性 ,更接近高斯分布 ,但是它 们的光谱宽度分别下降到 130 nm 和 115 nm。理论 计算表明,当 α进一步减小时,对应的增益带宽会 更窄。图 1 曲线 d 中的 α 为 41 mrad ,这时光学参 变放大在大约 210 nm 的光谱宽度范围内都具有较 高的增益,但是在增益谱上产生了严重的调制,调制 幅度超过了最大值的 50%。增益谱的这种严重调 制对随后的脉冲压缩是极为不利的。理论计算还发 现,当 α进一步减小时,增益谱上的调制现象更加 严重 最后导致增益谱发生分裂 如图 1 中曲线 e 所 示 ,当 α 减小到 28 mrad 时,增益谱分裂为两部分, 增益带宽则变窄到约3 nm~4 nm。因此,在这种参 数条件下的非共线光学参变啁啾脉冲放大过程中, 应该选择 $\alpha = 41.5 \text{ mrad}$ 作为最佳非共线角。

3 实验研究及结果

实验装置如图 2 所示。

Fig. 2 Schematic of the experimental arrangement of BBO-I NOPCA. FO : Faraday Oscillator ; M_1 (R = 120 cm) and M_2 (R = -60 cm) are spherical reflectors ; PC : pockels cell ; P_1 and P_2 : polarizers

用8W氩离子激光器抽运的自锁模钛宝石激 光器作为种子信号源,中心波长为800 nm,输出脉 冲的宽度约为 30 fs 重复频率为 80 MHz 光谱宽度 约为 36 nm。该飞秒脉冲首先经过一个全反射式光 栅展宽器进行脉冲展宽 该脉冲展宽器包括两个共 心放置的球面反射镜 其中一个为凹面反射镜 曲率 半径 R = -60 cm),另一个为凸面反射镜(曲率半 径 R = 120 cm) 光栅采用 1200 l/mm 的全息镀金光 栅。该展宽器将钛宝石振荡器输出的飞秒脉冲展宽 为 300 ps 左右的啁啾脉冲。然后利用一个普克尔 盒单脉冲选择器从 80 MHz 的脉冲列中选出重复频 率为 10 Hz 的脉冲,并通过一个 4:1的望远成像系 统将光束进行缩孔后入射到非共线光学参变啁啾脉 冲放大晶体上,作为非共线光学参变啁啾脉冲放大 的信号脉冲。实验中的抽运光来自一个倍频调 Q 输出的 Nd: YAG 激光器,其重复频率为 10 Hz,抽运 光脉冲的能量为 10 ml 脉冲宽度为 6 ns (FWHM), 一个焦距为 f=3 m 的会聚透镜将抽运光会聚到晶 体上,为避免抽运光对晶体造成破坏,晶体放置于会 聚光束焦点前面约 50 cm 处。抽运光的光强约为 200 MW/cm²。抽运光与信号光之间的时间抖动小 于1 ns ,确保晶体中信号光始终在抽运光的时间包 络内。实验采用 BBO(CASIX)晶体作为非共线光 学参变啁啾脉冲放大介质,晶体尺寸为4mm× 4 mm×13.5 mm,两个端面对 800 nm 和 532 nm 光 镀增透膜。光学参变放大工作在 BBO 第一类(e→ o+o)非共线相位匹配条件下,信号光与抽运光的夹

角为 41.5 mrad。放大后的信号光经分束后,分别 用能量计和 CCD 光谱仪监测其能量和输出光谱,本 实验中所用的光谱仪已经经过了定标校正,本文中 给出的光谱曲线均为光谱的相对强度值。

图 3 为输入信号光的光谱测试曲线,其光谱宽 度约为 36 nm。在非共线夹角 α 为 41.5 mrad,即最 佳理论计算角时,我们成功地对信号脉冲进行了放 大 放大增益为 55(与理论值 60 倍接近)。光谱测 试显示,放大后的光谱宽度仍然约为 36 nm,如图 4 所示。与输入信号光光谱进行比较,放大过程没有 出现光谱畸变。

Fig. 3 The measured input signal spectrum (FWHM: 36 nm)

Fig. 4 The measured amplified signal spectra of BBO-I NOPCA with noncollinear angle $\alpha = 41.5$ mrad

为了与前面的理论计算结果比较,我们保持其 他条件不变,改变非共线光学参变啁啾脉冲放大过 程的非共线角 α ,并测量其放大光谱。当 α 增大 1 mrad 左右时,实验中并未发现光谱有明显变化, 这是由于本实验中的信号光谱宽度(36nm)远小于 光学参变放大支撑带宽的理论计算值(约 180 nm)。 减小 α 角,放大信号光谱也未见明显变化;但当 α 角减小约 1 mrad,即 $\alpha = 41$ mrad 时,发现光谱开始 产生畸变,如图 5 所示。继续减小 α 角,光谱开始 变窄,当 α 角减小到约 30 mrad 时,放大信号光的带 宽变窄到只有约 3 nm~4 nm,如图 6 所示。

在 Cerullo 等人的报道中指出,当非共线角变化 ±0.5(±8.7 mrad)时,放大信号光的光谱带宽未

Fig. 5 The measured amplified signal spectra of BBO-I NOPCA with noncollinear angle $\alpha = 41$ mrad

Fig. 6 The measured amplified signal spectra of BBO-I NOPCA with noncollinear angle $\alpha = 30$ mrad

见明显变窄^[7]。这是由于 Cerullo 等人的实验是采 用飞秒脉冲作为抽运光,因此其抽运光光强可以达 到几十 GW/cm²,这样光学参变放大所用的晶体的 厚度可以薄到只有 1 mm~3 mm,因此,其光学参变 放大带宽远宽于我们所采用的纳秒光抽运的光学参 变放大的带宽。然而飞秒脉冲抽运的光学参变放大 中,由于抽运光的能量很低,最后得到的信号光能量 一般只能到几百微焦耳的量级。而纳秒激光脉冲的 能量可以达到几百甚至几千焦耳。因此可以采用大 口径的非线性晶体作为光学参变放大介质,使输出 激光脉冲的峰值功率达到 TW(10¹² W)甚至 PW (10¹⁵ W)量级,从而创造极端超强超快光场条件,为 强光光学科学技术的重大前沿课题与许多相关的重 要高技术应用与交叉学科领域的研究提供有力的实 验工具。

结论 从实验上研究了以纳秒级调 Q 倍频的 Nd:YAG激光器输出的532 nm 激光脉冲为抽运光、 以自锁模钛宝石激光器输出并经光栅对展宽的 800 nm啁啾脉冲为信号光的宽带 BBO 第一类非共 线光学参变啁啾脉冲放大。实验表明,在非共线光 学参变啁啾脉冲放大过程中,改变非共线夹角,不仅 会改变放大过程的增益谱宽,而且对增益谱的形状 也会产生很大的影响。因此,在非共线宽带非共线 光学参变啁啾脉冲放大过程中,必须选择最佳的非 共线夹角,从而得到最大的增益带宽,同时保持激光 脉冲有较为理想的光谱形状。

参考文献

- [1] Backus S, Durfee III C G, Murnae M M et al.. High power ultrafast lasers. Review of Scientific Instruments, 1998, 69(3):1207~1223
- [2]杨晓东,张正泉,徐至展. 钛宝石再生放大器实验研究. 光学学报,1998,18(9):1170~1173
- [3] Ross I N, Matousek P, Towrie M et al.. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt.

Commun., 1997, 144(1):125~133

- [4] Akira S, Takayoshi K. Noncollinearly phase-matched femotosecond optical parametric amplification with a 2000 cm⁻¹ bandwidth. *Appl. Phys. Lett.*, 1998, 72 (2):147~149
- [5] Cerullo G, Nisoli M, Stagira S et al.. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt. Lett., 1998, 23(11):1283~1285
- [6] Sutherland R L. Handbook of Nonlinear Optics. New York: Marcel Dekker, 1996. 121~147
- [7] Cerullo G , Nisoli M , Silvestri S D. Generation of 11 fs pulses tunable across the visible by optical parametric amplification. *Appl. Phys. Lett.*, 1997, 71(25) 3616~ 3618

Experimental Study on Bandwidth of BBO-I Noncollinear Optical Parametric Chirped Pulse Amplifier

Yang Xiaodong Xu Zhizhan Zhang Zhengquan Peng Jiahui Leng Yuxin Wang Jian'an Jin Shiqi

(Laboratory for High Intensity Optics, Shanghai Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Shanghai 201800) (Received 17 May 2000; revised 7 September 2000)

Abstract: BBO-I noncollinear optics parametric chirped pulse amplification pumped by a *Q*-switched and frequency-doubled Nd: YAG laser is studied experimentally. The signal is a chirped pulse at wavelength of 800 nm, which is obtained from a self-mode-locked Ti: sapphire laser and then is stretched by a grating pairs. The result shows that variation of the noncollinear angle can affect the gain spectrum significantly.

Key words: optics parametric chirped pulse amplification (OPCPA); noncollinear angle; gain bandwidth